首页 | 本学科首页   官方微博 | 高级检索  
     

电容成像图像重建算法原理及评价
引用本文:彭黎辉,陆耿,杨五强. 电容成像图像重建算法原理及评价[J]. 清华大学学报(自然科学版), 2004, 44(4): 478-484
作者姓名:彭黎辉  陆耿  杨五强
作者单位:清华大学,自动化系,北京,100084;Department of Electrical Engineering and Electronics,UMIST,PO Box 88,Manchester M60 IQD,UK
基金项目:国家自然科学基金资助项目(60204003)
摘    要:对现有的电容成像图像重建算法进行了综述并介绍了其原理,其中包括线性反投影法(LBP)、基于奇异值分解(SVD)的直接算法、Tikhonov正则化方法、Newton-Raphson算法、最速下降法、Landweber迭代算法、代数重建技术(ART)、同步迭代重建技术(SIRT)和基于模型的重建算法。在此基础上使用仿真和实验数据对目前主要使用的线性反投影法、基于奇异值分解的直接方法、Tikhonov正则化方法、Tikhonov迭代、投影Landweber迭代等进行了评价。对它们从电容值误差、图像误差、相关系数和耗用时间几个角度进行了比较,并对今后电容成像图像重建算法的发展方向提出了一些看法。

关 键 词:图像重建  电容成像  逆问题
文章编号:1000-0054(2004)04-0478-07
修稿时间:2003-04-18

Image reconstruction algorithms for electrical capacitance tomography:state of the art
PENG Lihui,LU Geng,YANG Wuqiang. Image reconstruction algorithms for electrical capacitance tomography:state of the art[J]. Journal of Tsinghua University(Science and Technology), 2004, 44(4): 478-484
Authors:PENG Lihui  LU Geng  YANG Wuqiang
Affiliation:PENG Lihui~1,LU Geng~1,YANG Wuqiang~2
Abstract:Image reconstruction for electrical capacitance tomography (ECT) seeks to calculate the permittivity distribution from capacitance measurements. This paper reviews existing ECT image reconstruction algorithms, including linear back projection (LBP), singular value decomposition (SVD), Tikhonov regularisation, Newton-Raphson, steepest descent, Landweber iteration, the algebraic reconstruction technique (ART), the simultaneous iterative reconstruction technique (SIRT), and model-based reconstruction. The most commonly used ECT image reconstruction algorithms, LBP, SVD, Tikhonov regularization, iterative Tikhonov, and projected Landweber iteration, were evaluated using simulations and experimental data. The evaluation results are compared in terms of capacitance error, image error, correlation coefficient, and the time required for image reconstruction. Future possibilities on ECT image reconstruction algorithms are also discussed.
Keywords:image reconstruction  electrical capacitance tomography  inverse problems
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号