首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机元模型的随机鲁棒设计
引用本文:张超,陈宗基. 基于支持向量机元模型的随机鲁棒设计[J]. 系统仿真学报, 2008, 20(19): 5374-5379,5390
作者姓名:张超  陈宗基
作者单位:北京航空航天大学自动化科学与电气工程学院自动控制系
摘    要:随机鲁棒设计是一种基于蒙特卡洛仿真的优化设计方法.通常情况下,对于复杂仿真模型的随机鲁棒设计时间开销很大.为减小随机鲁棒设计过程中的时间开销,使用参数最优的最小二乘支持向量机替代仿真模型进行随机鲁棒设计.使用标准粒子群优化算法搜索支持向量机参擞和控制器参数的寻优.通过一个基准测试问题证明了该方法的可行性.

关 键 词:随机鲁棒性  元模型  最小二乘支持向量机  蒙特卡洛仿真  粒子群优化

Probabilistic Robustness Design Using Support Vector Machine based Metamodel
ZHANG Chao,CHEN Zong-ji. Probabilistic Robustness Design Using Support Vector Machine based Metamodel[J]. Journal of System Simulation, 2008, 20(19): 5374-5379,5390
Authors:ZHANG Chao  CHEN Zong-ji
Abstract:The probabilistic robustness design is a simulation-based design approach in nature. It is computationally intensive, sometimes even impossible, to perform probabilistic robustness design method on complex time-consuming simulation models. The least squares support vector machine based metamodel is introduced into probabilistic robustness design in order to alleviate the computational burden. Standard particle swarm optimization is employed in two aspects: parameter optimization of the support vector machine metamodel and exploration of the controller parameter space for probabilistic robust solution. An application to a benchmark problem is displayed to demonstrate the feasibility of the proposed method.
Keywords:probabilistic robustness  metamodel  least squares support vector machine  Monte Carlo simulation  particle swarm optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号