摘 要: | 自然场景文本区域定位是场景图像内容分析的重要步骤,文本区域定位能够为后续的文本识别提供便利.从场景文本特性出发,提出了一种基于最大极值稳定区域(maximally stable extremal regions,MSER)、颜色聚类和视觉显著性的鲁棒性文本定位方法.为了尽可能多地提取出潜在的文本区域,分别在灰度图像和彩色图像上采用最大极值稳定区域和颜色聚类来进行连通域的分析.对于得到的候选连通域,利用自然场景文本的显著性特征和少量的先验信息来滤除其中的非文本区域.将保留的文本区域用数学形态学水平膨胀的方法连成文本行输出.显著性评估的引入使得该方法能够减少大量参数的设定.标准数据集上的实验结果表明,在没有额外的训练数据和少量先验信息的情况下,该方法可以获得较好的正确率和召回率.
|