首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换和支持向量机的音频分类
引用本文:郑继明,邢峰,吴渝,等. 基于小波变换和支持向量机的音频分类[J]. 重庆邮电大学学报(自然科学版), 2008, 20(2): 212-216
作者姓名:郑继明  邢峰  吴渝  
作者单位:1. 重庆邮电大学,应用数学研究所,重庆,400065
2. 重庆邮电大学,计算机科学与技术学院,重庆,400065
基金项目:重庆市自然科学基金 , 重庆市教委资助项目
摘    要:
音频特征提取是音频分类的基础,而音频分类又是基于内容的音频检索的关键。使用小波变换和支持向量机的方法对音频进行分类。研究了小波变换域的音频特征提取,分析了这些特征在小波变换域中的意义。把得到的特征向量作为支持向量机的输入,把音频分成纯语音、带背景音乐的语音、音乐、环境音4种类型。实验结果表明,基于小波域的特征计算简单、能够较好地区分不同的音频类型,得到较高的分类精度。

关 键 词:小波变换;子带;特征提取;音频分类;支持向量机
收稿时间:2007-01-16

Audio classification based on wavelet transform and support vector machine
ZHENG Ji-ming,XING Feng,WU Yu,LI Jing. Audio classification based on wavelet transform and support vector machine[J]. Journal of Chongqing University of Posts and Telecommunications, 2008, 20(2): 212-216
Authors:ZHENG Ji-ming  XING Feng  WU Yu  LI Jing
Affiliation:Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing 400065,P.R.China
Abstract:
Feature extraction is the foundation of audio classification, while audio classification is a key of content based audio retrieval. Wavelet and support vector machine are used to classify the audio clips. The feature extraction of wavelet domain and the significance of each feature in wavelet domain are analyzed. The feature vectors are used as inputs of support vector machine to classify audio clips into pure speech, speech with music, music and environment sounds. Experimental results show that features extracted form wavelet domain of audio clips are simple to compute and can well separate different type of audio clips, yielding high classification accuracy.
Keywords:wavelet transform   sub-band   feature extraction   audio classification   support vector machine
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号