首页 | 本学科首页   官方微博 | 高级检索  
     

基于时间序列分解与全连接神经网络的警情长周期时间序列预测
作者姓名:石少冲  陈鹏  曾昭龙  胡校成
作者单位:中国人民公安大学信息技术与网络安全学院,北京102600;中国人民公安大学信息技术与网络安全学院,北京102600;安全防范技术与风险评估公安部重点实验室,北京102600;社会安全风险感知与防控大数据应用国家工程实验室,北京100043
基金项目:(9192022);社会安全风险感知与防控大数据应用国家工程实验室主任;中国人民公安大学基本科研业务费课题(2018JKF228);中国人民公安大学2019年拔尖人才培养专项资助硕士研究生科研创新项目(2019ssky002) 资助。第一
摘    要:传统的警情时间序列预测以实际的发案数量为目标,且仅能实现短期的预测,但由于警情时间序列本身固有的强随机性使预测很难达到理想的效果。根据警情时间序列数据的特点,从公安工作的实际需求出发,提出了一种基于时间序列分解与全连接神经网络的(STL-FNN)预测模型,该模型以预测警情的单日发案的风险等级为主要目标,能够实现警情风险等级的长周期预测。利用该模型对B市侵财类警情数据进行了时间序列长周期预测的实证分析,结果表明:STL-FNN模型能够实现一年的警情单日发案风险的预测,平均准确率为0.624 7,预测性能优于Holt-Winters、LSTM、Prophet和ARIMA等模型。

关 键 词:警情预测  时间序列  全神经网络  准确率
收稿时间:2019-07-27
修稿时间:2020-01-29
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号