摘 要: | 常见的Gronwall不等式分为积分形式与微分形式。首先,对于常见的积分型Gronwall不等式,旨在给予一种新的证明方法,不同于以往不等式两端乘以指数函数的证明方法,而是应用最基本的积分公式加以证明,并用该不等式证明了一阶常微分方程解的唯一性;其次,旨在推广微分型Gronwall不等式,应用基本微分型不等式证明了波动方程解的唯一性及热传导方程的解能量估计;再者,应用变量代换、求导公式及基本的微分型Gronwall不等式,把一阶微分型的Gronwall不等式推广为两种情形:右端控制项由一次方升到α(α0)次方;把一阶微分型的Gronwall不等式推广到二阶微分型的Gronwall不等式,并得到与一阶相似的结论。
|