首页 | 本学科首页   官方微博 | 高级检索  
     

基于经验分布函数快速收敛的信噪比估计器
引用本文:王永庆,赵诗琪,申宇瑶,马志峰. 基于经验分布函数快速收敛的信噪比估计器[J]. 北京理工大学学报, 2021, 41(12): 1300-1306. DOI: 10.15918/j.tbit1001-0645.2021.020
作者姓名:王永庆  赵诗琪  申宇瑶  马志峰
作者单位:北京理工大学 信息与电子学院, 北京 100081
基金项目:国家自然科学基金资助项目(61871033)
摘    要:通过Kolmogorov-Smirnov检验,基于经验分布函数(EDF)的信噪比估计器在宽信噪比范围内对各种多级星座的信噪比估计都是有效的.然而,在本地累积分布函数(CDF)和EDF之间需要进行大量的匹配操作和加法运算.基于这个问题,提出了一种通过线性多项式连续迭代来加速匹配过程的信噪比估计器.在保证估计精度的前提下,使用"以直代曲"的思想,用线性多项式的根不断迭代逼近最大距离曲线的零点,并将零点所对应的信噪比作为接收信号信噪比的估计值.仿真结果表明,与原算法估计器相比,该方法的迭代次数减少了90%以上,降低了原算法的匹配复杂度和运算量.与现有降复杂度的估计器相比,该估计器具有更快的收敛速度和更好的估计性能. 

关 键 词:信号处理   信噪比估计器   多级星座   多项式迭代   快速收敛
收稿时间:2021-01-20

Signal-to-Noise Ratio Estimator with Fast Convergence Based on Empirical Distribution Function
WANG Yongqing,ZHAO Shiqi,SHEN Yuyao,MA Zhifeng. Signal-to-Noise Ratio Estimator with Fast Convergence Based on Empirical Distribution Function[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2021, 41(12): 1300-1306. DOI: 10.15918/j.tbit1001-0645.2021.020
Authors:WANG Yongqing  ZHAO Shiqi  SHEN Yuyao  MA Zhifeng
Affiliation:School of Information and Electronics,Beijing Institute of Technology,Beijing 100081, China
Abstract:Empirical distribution function (EDF)-based estimators are effective for various multilevel constellations in a wide signal-to-noise ratio (SNR) range via the Kolmogorov-Smirnov test. However,there are numerous addition and matching operations between reference cumulative distribution functions (CDFs) and the EDF. A signal-to-noise ratio estimator through continuous iteration with a linear polynomial to accelerate the matching procedure was proposed. On the premise of estimation accuracy,using the idea of "direct substitution curve",the zero point of the maximum distance curve was iteratively approximated by the root of the linear polynomial,and the SNR corresponding to the zero point was used as the estimation value of the received signal. The simulation results show that compared with the original algorithm,the iteration number of the proposed strategy is reduced by more than 90%,which greatly reduces the matching complexity and computational complexity. Compared with the existing reduced-complexity iterative strategy,the proposed strategy exhibited faster convergence and better estimation performance.
Keywords:signal processing  SNR estimator  multilevel constellation  polynomial iteration  fast convergence rate
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号