首页 | 本学科首页   官方微博 | 高级检索  
     

PRNet:渐进式消减不确定区域的息肉分割网络
作者姓名:何东之 ?  肖杏梅  李韫昱  薛永乐  李雲奇
作者单位:(1.北京工业大学 信息学部, 北京 100124; 2.中国人民解放军第一医学中心, 北京 100039)
摘    要:由于息肉图像的自动分割病灶区域大小不一和边界模糊,从而导致分割精度较低.针对这两个问题,本文提出先定位后逐步精细的渐进式消减网络(Progressive Reduction Network,PRNet).该网络采用Res2Net提取病灶区域特征,利用多尺度跨级融合模块将注意融合机制与跨级特征结合,有效应对病灶区域多尺度问题,提升定位准确度.在自上而下恢复图像分辨率的过程中,引入不确定区域处理模块和多尺度上下文感知模块.前者通过设定递减的阈值逐步挖掘息肉边缘信息,增强边缘细节特征的识别能力;后者则进一步探索病灶区域周围潜在的上下文语义,提升模型的整体表征能力.此外,本算法还设计了一个简单的特征过滤模块,用于筛选编码器特征中的有效信息.在Kvasir-SEG、CVC-Clinic和ETIS数据集上的实验结果表明,所提算法的Dice系数分别达到了92.09%、93.05%和74.19%,优于现有的息肉分割算法,展示出了较好的鲁棒性和泛化性.

关 键 词:医学图像处理  息肉分割  结肠镜  不确定区域  多尺度
点击此处可从《湖南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号