首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The large-conductance Ca2+-activated K+ channel is essential for innate immunity
Authors:Ahluwalia Jatinder  Tinker Andrew  Clapp Lucie H  Duchen Michael R  Abramov Andrey Y  Pope Simon  Nobles Muriel  Segal Anthony W
Institution:Department of Medicine University College London, Gower Street, London WC1E 6BT, UK.
Abstract:Neutrophil leukocytes have a pivotal function in innate immunity. Dogma dictates that the lethal blow is delivered to microbes by reactive oxygen species (ROS) and halogens, products of the NADPH oxidase, whose impairment causes immunodeficiency. However, recent evidence indicates that the microbes might be killed by proteases, activated by the oxidase through the generation of a hypertonic, K+-rich and alkaline environment in the phagocytic vacuole. Here we show that K+ crosses the membrane through large-conductance Ca2+-activated K+ (BK(Ca)) channels. Specific inhibitors of these channels, iberiotoxin and paxilline, blocked oxidase-induced 86Rb+ fluxes and alkalinization of the phagocytic vacuole, whereas NS1619, a BK(Ca) channel opener, enhanced both. Characteristic outwardly rectifying K+ currents, reversibly inhibited by iberiotoxin, were demonstrated in neutrophils and eosinophils and the expression of the alpha-subunit of the BK channel was confirmed by western blotting. The channels were opened by the combination of membrane depolarization and elevated Ca2+ concentration, both consequences of oxidase activity. Remarkably, microbial killing and digestion were abolished when the BK(Ca) channel was blocked, revealing an essential and unexpected function for this K+ channel in the microbicidal process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号