首页 | 本学科首页   官方微博 | 高级检索  
     

基于最大Lyapunov指数的高边坡安全监控优化模型
引用本文:牛景太. 基于最大Lyapunov指数的高边坡安全监控优化模型[J]. 三峡大学学报(自然科学版), 2012, 34(4): 34-38
作者姓名:牛景太
作者单位:南昌工程学院水利与生态工程学院,南昌 330099;河海大学水利水电学院,南京210098
基金项目:水利部公益性行业专项项目,江西科技支撑项目,南昌工程学院青年基金
摘    要:高边坡受爆破、地震等强外界作用时,位移监测值会出现明显跳跃.有效辨识测值突变位置,消除或削弱位移突变对测值序列整体数值特征的影响,是提高高边坡位移监控模型拟合和预测精度的关键问题之一.基于高边坡系统演化过程中的非线性动力学特性,组合应用相空间重构、最大Lyapunov指数、云模型等数值分析手段,研究了高边坡位移突变辨识等的实现方法,在对高边坡位移与影响因素相关分析的基础上,探讨了考虑动力学结构突变影响的位移预测模型构建原理与算法.该模型重点依据的是最近一次位移突变后的监测资料,考虑的是突变后形成的相对稳定的高边坡动力系统特性,因而可以有效提高监控模型的拟合和预测精度.

关 键 词:高边坡  动力结构系统  不稳定度  云模型  安全监控模型

A Safety Monitoring Optimal Model for High Slope Based on Largest Lyapunov Exponent
Niu Jingtai. A Safety Monitoring Optimal Model for High Slope Based on Largest Lyapunov Exponent[J]. Journal of China Three Gorges University(Natural Sciences), 2012, 34(4): 34-38
Authors:Niu Jingtai
Affiliation:Niu Jingtai(1. College of Water Conservancy & Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, Chinas2. College of Water Conservancy & Hydropower Engineering, Hohai Univ. , Nanjing 210098, China)
Abstract:Displacement monitoring values exhibit notable mutations if a high slope is affected by blasting, earthquakes, or other strong outside effects. Among the key problems in improving the fitting and prediction precision of the high slope displacement monitoring model include effectively identifying the mutation posi-tions of measured values and eliminating or weakening the effect of mutations on the numerical characteristics of the overall series of measurements. This paper Studies the realization method of high slope displacement mutations identification based on the nonlinear dynamic behavior in the high slope system evolution process, which combines phase space reconstruction, the largest Lyapunov exponent, the cloud model, and other nu-merical analysis methods. Furthermore, based on the correlation analysis between high slope displacement and the affecting factors, the current work discusses the building principle and algorithm of displacement con- sidering dynamic structure mutation effects. The proposed model depends on up-to-date monitoring data after the last displacement mutations, and considers the relatively stable high slope dynamic system characteristics formed after these mutations. Therefore, the fitting and prediction precision of the high slope displacement monitoring model can be effectively improved.
Keywords:high slope  displacement monitoring model  degree of instability  cloud model  safety mo-nitoring model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号