首页 | 本学科首页   官方微博 | 高级检索  
     

基于电流观测器的链式STATCOM反步控制方法
引用本文:于洪亮,王旭,杨丹,李维军. 基于电流观测器的链式STATCOM反步控制方法[J]. 东北大学学报(自然科学版), 2021, 42(6): 761-767. DOI: 10.12068/j.issn.1005-3026.2021.06.001
作者姓名:于洪亮  王旭  杨丹  李维军
作者单位:(1. 东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2. 东北大学 智能工业数据解析与优化教育部重点实验室,辽宁 沈阳110819; 3. 辽宁石油化工大学 机械工程学院, 辽宁 抚顺113001)
基金项目:国家自然科学基金资助项目(51607029).
摘    要:
针对电网中链式静态同步补偿器(STATCOM)系统的非线性特性和不确定性,提出了一种基于高增益自适应观测器的链式STATCOM反步控制方法.针对STATCOM的输出电流值的估计,设计了一种基于神经网络高增益观测器,通过引入径向基函数(RBF)神经网络,对模型参数变化进行估计,通过反馈设计,对系统进行线性化处理,利用反步法实现电压控制器设计.结合李雅普诺夫的渐近稳定性理论,获得链式STATCOM输出无功电流的控制.仿真和实验结果进一步验证了控制方法的正确性和有效性.

关 键 词:链式静态同步补偿器;高增益观测器;径向基函数神经网络;反步;Lyapunov理论  
修稿时间:2020-10-05

Backstepping Control Method of Cascaded STATCOM Based on a Current Observer
YU Hong-liang,WANG Xu,YANG Dan,LI Wei-jun. Backstepping Control Method of Cascaded STATCOM Based on a Current Observer[J]. Journal of Northeastern University(Natural Science), 2021, 42(6): 761-767. DOI: 10.12068/j.issn.1005-3026.2021.06.001
Authors:YU Hong-liang  WANG Xu  YANG Dan  LI Wei-jun
Affiliation:1.School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2.Key Laboratory of Intelligent Industry Data Analysis and Optimization of the Ministry of Education, Northeastern University, Shenyang 110819, China; 3. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China.
Abstract:
Aiming at the nonlinearity and uncertainty of the cascaded static synchronous compensator (STATCOM) system in power grid, a cascaded STATCOM backstepping control method was proposed based on a high gain adaptive observer. In order to estimate the output current value of STATCOM, an adaptive observer was designed based on neural network. The uncertain disturbance was estimated by introducing radial basis function (RBF) neural network. Through feedback design, the system was linearized. The back-stepping method was used to design the voltage controller. Based on Lyapunov’s asymptotic stability theory, the output reactive current control of cascaded STATCOM was obtained. The simulation and experimental results further verify the correctness and effectiveness of the proposed control method.
Keywords:cascaded static synchronous compensator; a high gain observer; radial basis function neural network; backstepping; Lyapunov theory  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号