首页 | 本学科首页   官方微博 | 高级检索  
     

微分求积法求解变截面功能梯度梁的弯曲问题
引用本文:张靖华,龚云,李世荣. 微分求积法求解变截面功能梯度梁的弯曲问题[J]. 甘肃科学学报, 2010, 22(1): 14-17
作者姓名:张靖华  龚云  李世荣
作者单位:兰州理工大学,理学院,甘肃,兰州,730050
基金项目:国家自然科学基金项目(10872083);;兰州理工大学科研发展基金(BS10200902)
摘    要:
应用微分求积法(DQM)分析变截面功能梯度梁的弯曲.基于Euler梁理论,同时考虑横截面尺寸和材料参数沿长度梯度变化,建立基本方程.采用DQM对变系数高阶微分方程进行数值求解.首先,退化为等截面均匀材料梁得到数值结果,并与解析解比较,说明了DQM的有效性和精确性.其次,分别考虑横截面尺寸和材料物性参数沿轴向连续变化,给出功能梯度梁的挠度的数值解,并分析几何参数、物理参数沿轴线变化时梁挠度的变化规律.

关 键 词:功能梯度材料  微分求积法  变截面梁  数值解

Bending of Functionally Graded Beam with Variable Cross-Sections by Differential Quadrature Method
ZHANG Jing-hua,GONG Yun,LI Shi-rong. Bending of Functionally Graded Beam with Variable Cross-Sections by Differential Quadrature Method[J]. Journal of Gansu Sciences, 2010, 22(1): 14-17
Authors:ZHANG Jing-hua  GONG Yun  LI Shi-rong
Affiliation:School of Sciences;Lanzhou University of Science and Technology;Lanzhou 730050;China
Abstract:
The bending of functionally graded material(FGM) beam with variable cross-sections is analyzed by using differential quadrature method(DQM).Based on the theory of Euler beam,considering the variations of cross-section and gradient of the materials along the axial coordinate,the governing equations are derived.DQM is used to numerically solve higher order differential equations with variable coefficients.Firstly,comparisons between the numerical results and analytical results for the homogenous beam are give...
Keywords:functionally graded material  differential quadrature method  variable cross-section beam  numerical solution  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号