首页 | 本学科首页   官方微博 | 高级检索  
     

一种优化的自适应总体最小二乘系统辨识算法
引用本文:朱义勇,姚富强,王厚生,李永贵,朱勇刚. 一种优化的自适应总体最小二乘系统辨识算法[J]. 系统仿真学报, 2008, 20(18)
作者姓名:朱义勇  姚富强  王厚生  李永贵  朱勇刚
作者单位:解放军理工大学通信工程学院研究生4队,南京电讯技术研究所,通信指挥学院二系
摘    要:对于监督信号和训练信号都含有噪声的系统辨识问题,如果采用经典的最小均方和迭代最小二乘算法进行估计,会带来较大的误差,而直接求解又会有较大的计算量,不利于在线计算.将权向量的求解转化为增广输入向量自相关矩阵瑞利商的受限最佳化问题,对增广输入向量进行遮代估计,同时建立了步长因子和误差信号问的函数关系,这个函数关系是建立在代价函数相对于步长梯度的基础上,而不是基于经验公式.所提算法结构简单,具有更好的稳健性,仿真表明这种算法相对于同类总体最小二乘算法和其他自适应算法有更快的收敛速度和更高的收敛精度.

关 键 词:系统辨识  瑞利商  递推最小二乘  总体最小二乘  自适应算法

Novel Variable Step-Size Adaptive TLS Algorithm
ZHU Yi-yong,YAO Fu-qiang,WANG Hou-sheng,LI Yong-gui,ZHU Yong-gang. Novel Variable Step-Size Adaptive TLS Algorithm[J]. Journal of System Simulation, 2008, 20(18)
Authors:ZHU Yi-yong  YAO Fu-qiang  WANG Hou-sheng  LI Yong-gui  ZHU Yong-gang
Abstract:In the application of system identification in which the supervising signal and the training signal are both noisy, the typical adaptive algorithms such as least mean square(LMS) algorithm and recursive least square(RLS) algorithm will get an inaccurate estimate, and direct computing the matrix equation will get large burden of computation going against on-line implementation. The weight vector can be obtained by the constrained optimization of the rayleigh quotient of auto-correlation matrix of the input vector augmented. By constructing a function relationship between the step-size parameter and the error signal which is based on the gradient of the cost function and step size factor other than the experiential formula, the proposed algorithm has good robust performance. This algorithm has a simple structure, and simulations show that the algorithm proposed provides faster convergence rate and less misadjustment at steady-state than other TLS algorithms and adaptive algorithms.
Keywords:system identification  rayleigh quotient  recursive least square  total least square  adaptive algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号