首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络模型的采场巷道收敛预测研究
引用本文:盛建龙. 基于神经网络模型的采场巷道收敛预测研究[J]. 武汉科技大学学报(自然科学版), 2005, 28(2): 172-174
作者姓名:盛建龙
作者单位:武汉科技大学化工与资源环境学院,湖北,武汉,430081
基金项目:湖北省新世纪高层次人才工程科研项目资助
摘    要:根据余化寺矿的生产实际情况,分析影响巷道围岩收敛的主要因素,利用神经网络的非线性、学习和记忆等功能,建立了针对采场巷道收敛的神经网络预测模型、通过对采场巷道围岩收敛的现场监测,采用训练样本训练网络模型,并用检验样本对模型进行检验,预测模型性能好,预测精度高。

关 键 词:采场巷道 神经网络模型 预测研究 神经网络预测模型 围岩收敛 生产实际 现场监测 样本训练 检验样本 模型性能 预测精度 非线性
文章编号:1672-3090(2005)02-0172-03
修稿时间:2005-04-18

Prediction of Convergence of Mining Roadways Based on Neural Network Model
SHENG Jian-long. Prediction of Convergence of Mining Roadways Based on Neural Network Model[J]. Journal of Wuhan University of Science and Technology(Natural Science Edition), 2005, 28(2): 172-174
Authors:SHENG Jian-long
Abstract:Based on the production practice at Yuhuasi Mine,the major factors influencing the convergence of surrounding rocks in roadways are analyzed.Making use of the non-linearity, self-study and memory of artificial neural network,a BP neural network model is founded for predicting the convergences of roadways. By surveying the convergence of surrounding rocks in roadways,the proposed model is trained by learnt samples and tested by check samples.It is found that the prediction model is of high quality and high precision.
Keywords:mining roadway  convergence of surrounding rock  neural network model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号