首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化的三维突防航迹规划仿真研究
引用本文:唐强,王建元,朱志强. 基于粒子群优化的三维突防航迹规划仿真研究[J]. 系统仿真学报, 2004, 16(9): 2033-2036
作者姓名:唐强  王建元  朱志强
作者单位:西北工业大学自动化学院,陕西西安,710072;飞行自动控制研究所,陕西西安,710065
摘    要:提出了一种基于粒子群优化的三维突防航迹规划方法并进行了仿真验证。通过引入最小威胁曲面的概念生成三维航迹搜索空间,利用一个有限项的多项式函数来逼近最小威胁曲面中的三维航迹在二维水平面内的投影,从而原来的规划问题简化为在一个一元函数多项式系数空间中的搜索寻优。利用粒子群优化,将约束条件和搜索算法相结合,能有效减小搜索空间,提高效率。仿真结果表明,生成的航迹具有地形跟随、地形回避和威胁回避的功能。

关 键 词:突防航迹规划  最小威胁曲面  航迹投影  粒子群优化
文章编号:1004-731X(2004)09-2033-04
修稿时间:2003-07-30

The Simulation Study of PSO Based 3-D Vehicle Route Planning for Low Attitude Penetration
TANG Qiang,,WANG Jian-yuan,,ZHU Zhi-qiang. The Simulation Study of PSO Based 3-D Vehicle Route Planning for Low Attitude Penetration[J]. Journal of System Simulation, 2004, 16(9): 2033-2036
Authors:TANG Qiang    WANG Jian-yuan    ZHU Zhi-qiang
Affiliation:TANG Qiang1,2,WANG Jian-yuan1,2,ZHU Zhi-qiang1,2
Abstract:A 3-D vehicle route planning method based on PSO (Particle Swarm Optimization) for low attitude penetration is proposed and simulated. Introducing the concept of SOMR (Surface of Minimum Risk) forms the search space. And a polynomial function with finite terms is used to approach the horizon projection of the 3-D route in the SOMR. So the original planning problem is simplified to search the best series of values in the coefficient space of the polynomial function. Particle swarm optimization is introduced to solving this optimization problem. Incorporating constrains into the algorithms, a desirable vehicle route can be generated and the efficiency can be greatly improved. Via the method mentioned above, the generated route has the function of terrain following, terrain avoidance and threat avoidance. Simulation results are provided to illustrate the idea.
Keywords:penetration route planning  surface of minimum risk  route projection  pso  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号