首页 | 本学科首页   官方微博 | 高级检索  
     

变分自编码器和注意力机制的异常入侵检测方法
作者姓名:施媛波
作者单位:昆明城市学院, 昆明 650106
基金项目:云南省教育厅科学研究基金(2019J1048,2019J1042)
摘    要:针对传统的机器学习算法在检测未知攻击方面表现不佳的问题,提出了一种基于变分自动编码器和注意力机制的异常入侵检测方法,通过将变分自编码器和注意力机制相结合,实现使用深度学习方法从基于流量的数据中检测异常网络流量的目标。所提方法利用独热编码和归一化技术对输入数据进行预处理;将数据输入到基于注意力机制的变分编码器中,采集训练样本中隐含特征信息,并将其融入最终潜变量中;计算原始数据与重建数据之间的重建误差,进而基于适当的阈值判断流量的异常情况。实验结果表明,与其他入侵检测方法相比,所提方法明显改善了入侵检测的精度,不仅可以检测已知和未知攻击,而且还可以提高低频次攻击的检测率。

关 键 词:网络入侵检测  异常检测  变分自编码器  注意力机制
收稿时间:2021-02-26
修稿时间:2022-11-02
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号