摘 要: | 分布式拒绝服务(distributed denial-of-service, DDoS)攻击是网络中的常见威胁,攻击者通过向受害服务器发送大量无用请求使正常用户无法访问服务器,DDoS逐渐成为软件定义网络(software-defined networking, SDN)的重大安全隐患。针对SDN中DDoS攻击检测问题,提出了一种粗粒度与细粒度相结合的检测方案,使用队列论及条件熵作为到达流的粗粒度检测模块,使用机器学习作为细粒度检测模块,从合法包中准确检测出恶意流量。实验表明,在使用Mininet模拟SDN网络的环境中,方案可准确检测出DDoS攻击。
|