Transitional phenomenon of particle dispersion in gas-solid two-phase flows |
| |
Authors: | Luo Kun Fan JianRen Cen KeFa |
| |
Affiliation: | (1) State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China |
| |
Abstract: | Without using any turbulent model, direct numerical simulation of a three-dimensional gas-solid two-phase turbulent jet was performed by finite volume method. The effects on dispersion of particles with different Stokes numbers by the transitional behavior of turbulent structures were investigated. To produce high-resolution results and reduce the computation and storage, the fractional-step projection algorithm was used to solve the governing equations of gas phase fluid. The low-storage, three-order Runge-Kutta scheme was used for time integration. The governing equations of particles were solved in the Lagrangian framework. These numerical schemes were validated by the good agreement be-tween the statistical results of flow field and the related experimental data. In the study of particle dis-persion, it was found that the effects on particle dispersion by the spanwise vortex structures were prominent. The new behaviors of particle dispersion were also observed during the evolution of the flow field, i.e. the transitional phenomenon of particle dispersion occurs for the particles with small and intermediate Stokes numbers. |
| |
Keywords: | direct numerical simulation gas-solid two-phase flows coherent structures particle dispersion transition |
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录! |
| 点击此处可从《科学通报(英文版)》浏览原始摘要信息 |
|
点击此处可从《科学通报(英文版)》下载全文 |