首页 | 本学科首页   官方微博 | 高级检索  
     

有限域上由两个广义对角多项式所确定的簇中的有理点
引用本文:李涛,谭千蓉. 有限域上由两个广义对角多项式所确定的簇中的有理点[J]. 四川大学学报(自然科学版), 2009, 46(6): 1592-1594. DOI: 10.3969/j.issn.0490-6756.2009.06.004
作者姓名:李涛  谭千蓉
作者单位:四川大学数学学院,成都,610064,;攀枝花学院计算机学院,攀枝花,617000
摘    要:设Fq为有限域,f_l=a_(l1)x(~d~(l)_(11))_(11)…x~(d~((l))_(1_(k1)))_(1_(k1))+a_(l2)x~(d~((l))_(21))_(21)…x~(d~((l))_(2k_2)_(2k_2))+…+a_(ln)x~(d~((l))_(n1))_(n1)…x~(d~((l))_(nk_n)_(nk_n)+c_l(l=1,2)为F_q上的一组广义对角多项式,用N_q(V)表示由f_l(l=1,2)确定的族中的F_q有理点的个数.作者利用Adolphson和Sperber的牛顿多面体理论与指数和工具,证明了ord_qN_q(V)≥max{「∑~n_(i=1)1/d_i」-2,0,其中d_i=max{d~(1)_(ij),d~(2)_(ij)|1≤j≤k_i},1≤i≤n.

关 键 词:广义对角多项式组  有理点个数  有限域
收稿时间:2008-04-02

Rational points on the variety defined by two generalized diagonal polynomials over finite field
LI Tao and TAN Qian-Rong. Rational points on the variety defined by two generalized diagonal polynomials over finite field[J]. Journal of Sichuan University (Natural Science Edition), 2009, 46(6): 1592-1594. DOI: 10.3969/j.issn.0490-6756.2009.06.004
Authors:LI Tao and TAN Qian-Rong
Affiliation:School of Mathematics, Sichuan University;School of Computer Science and Technology, Panzhihua University
Abstract:Let F_q be the finite field and N_q(V) denote the number of F_q rational points on the variety determined by f_l=a_(l1)x(~d~(l)_(11))_(11)…x~(d~((l))_(1_(k1)))_(1_(k1))+a_(l2)x~(d~((l))_(21))_(21)…x~(d~((l))_(2k_2)_(2k_2))+…+a_(ln)x~(d~((l))_(n1))_(n1)…x~(d~((l))_(nk_n)_(nk_n)+c_l(l=1,2)By using the Newton polyhedra technique introduced by Adolphson and Sperber, the authors prove that ord_qN_q(V)≥max{「∑~n_(i=1)1/d_i」-2,0,where d_i=max{d~((1))_(ij),d~((2))_(ij)|1≤j≤k_i},1≤i≤n.
Keywords:generalized diagonal polynomial  number of rational points  finite field
本文献已被 万方数据 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号