融合算法的机械臂路径规划 |
| |
作者姓名: | 吴飞 沈大伟 |
| |
作者单位: | 武汉理工大学机电工程学院,湖北 武汉430070 |
| |
基金项目: | 国家自然科学基金项目(面上项目,重点项目,重大项目) |
| |
摘 要: | 针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT*)存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT*-APF-DP路径规划算法. 在RRT*算法的采样点生成阶段引入变采样范围偏置搜索与步长自适应调整策略,融合重新设计的APF算法的引力与斥力函数,增强路径扩展导向性与绕过障碍物能力. 采用重采样策略改进DP算法,优化避障代价与控制点数量. 实验结果表明,本算法规划的避障路径满足机械臂的运动要求,且算法规划的避障路径代价、规划时间和路径控制节点数均得到有效改善.
|
关 键 词: | 路径规划 机械臂 改进RRT*算法 路径优化 改进人工势场法 Douglas-Peucker算法 |
收稿时间: | 2023-10-13 |
修稿时间: | 2023-11-24 |
|
| 点击此处可从《福州大学学报(自然科学版)》浏览原始摘要信息 |
|
点击此处可从《福州大学学报(自然科学版)》下载全文 |
|