首页 | 本学科首页   官方微博 | 高级检索  
     

深部开采岩爆预测的神经网络方法
引用本文:王万德,张延新. 深部开采岩爆预测的神经网络方法[J]. 河北科技师范学院学报, 2007, 21(2): 35-38,72
作者姓名:王万德  张延新
作者单位:1. 黔西金坡煤业有限责任公司,贵州,毕节地区,551519
2. 燕山大学,建筑工程与力学学院
摘    要:岩爆是深部高地应力岩石地下工程中的一种常见灾害,其影响因素之间存在着极其复杂的非线性关系。在综合分析基础上,选取开采深度、围岩最大切向应力与岩石单轴抗压强度比值、岩石单轴抗压强度和抗拉强度比值、岩石冲击性倾向指数作为岩爆预测的评判指标。应用人工神经网络方法,建立了岩爆预测的计算模型,利用国内外一些深部开采、岩石地下工程资料作为学习样本和测试样本对模型进行训练。该模型成功应用于某矿巷道的岩爆预测,预测结果与实际情况一致,此研究为深部开采岩爆预测提供了新的途径。

关 键 词:深部开采  岩爆  非线性  开采深度  神经网络
文章编号:1672-7983(2007)02-0035-04
收稿时间:2007-02-08
修稿时间:2007-02-082007-05-18

Artificial Neural Networks for Predicting Rockburst in Deep Mining
WANG Wan-de,ZHANG Yan-xin. Artificial Neural Networks for Predicting Rockburst in Deep Mining[J]. Journal of Hebei Normal University of Science & Technology, 2007, 21(2): 35-38,72
Authors:WANG Wan-de  ZHANG Yan-xin
Affiliation:1 Qianxi Jinpo Coal CO, LTD, Guizhou, 551519; 2 School of Civil Engineering and Mechanics, Yanshan University; China
Abstract:Rockburst is a kind of dynamic unstable phenomenon for the surrounding rock mass in deep mining.There exists a complicated nonlinear relationship between rockburst's factors.We selected as the blasting indexes based on an analysis of the mechanism of rockburst: the mining depth,the ratio of maximal tangential stress and uniaxial compressive strength of the surrounding rocks,the ratio of uniaxial compressive strength and uniaxial tensile strength,and the elastic energy index.A rockburst prediction model is proposed by use of artificial neural network(ANN).The model is trained to converge by use of some samples from rock underground projects at home and abroad.The results show that it is feasible and appropriate to predict rockburst in deep mining.
Keywords:deep mining  rockburst  nonlinear  mining depth  artificial neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号