首页 | 本学科首页   官方微博 | 高级检索  
     

基于统计估计的盲信号分离算法
引用本文:虞晓,胡光锐. 基于统计估计的盲信号分离算法[J]. 上海交通大学学报, 1999, 33(5): 566-569
作者姓名:虞晓  胡光锐
作者单位:上海交通大学,电子工程系,上海,200052
摘    要:最大熵法(MaximumEntropy,ME)和最小互信息量法(MinimumMutualInformation,MMI)是两种目前最常用的盲信号分离算法.在分析ME与MMI算法的基础上,提出了一种利用反馈结构的输出信号概率密度函数(pdf)估计的增强ME算法.与传统ME算法相比较,新算法无需给出传统ME算法中神经元非线性函数的具体表达形式,而是直接利用输出信号pdf估计来推导算法的迭代核,进行算法自适应.分析了应用几种不同pdf估计方法的新算法迭代公式.通过计算机模拟表明,新算法比传统ME算法对于解决卷积混合输入的盲信号分离问题时,具有更好的算法性能.

关 键 词:盲信号分离;扩展最大熵算法;反馈结构
修稿时间:1998-04-10

Blind Signal Separation Based on Statistical Estimation
YU Xiao,HU Guan-rui. Blind Signal Separation Based on Statistical Estimation[J]. Journal of Shanghai Jiaotong University, 1999, 33(5): 566-569
Authors:YU Xiao  HU Guan-rui
Abstract:Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms are mainly two kinds of the Blind Signal Separation (BSS) algorithms. Based on the recursive architecture and the relationship between ME and MMI algorithms, an extended ME(EME) algorithm was proposed by using a special probability density function (pdf) estimation of outputs instead of searching the appropriate neurons' nonlinear function in the traditional ME algorithm. Several kinds of pdf estimation were studied. Based on the simulation, it can be concluded that the proposed algorithm has better performance than the traditional ME algorithm in convoluted mixture BSS problems.
Keywords:blind signal separation(BSS)  extended maximum entropy(EME) algorithm  recursive architecture
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号