首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于用户偏好序列的协同过滤推荐
引用本文:刘旭东,叶长国. 一种基于用户偏好序列的协同过滤推荐[J]. 泰山学院学报, 2009, 31(6): 45-49
作者姓名:刘旭东  叶长国
作者单位:1. 烟台职业学院,科研处,山东,烟台,264670
2. 泰山学院,信息科学技术学院,山东,泰安,271021
摘    要:协同过滤技术被成功地应用于个性化推荐系统中,但随着系统规模的扩大,它不能真实地反映用户的兴趣偏好.针对此缺点,提出了一种新的协同过滤推荐算法,该算法根据用户偏好序列的相似性来搜索目标用户的最近邻居和产生推荐,从而有效地解决了传统协同过滤推荐中过分依赖不能真实反映用户兴趣偏好的用户等级评价的问题,改进了传统协同过滤算法中计算邻居用户的方法.实验结果表明,该算法在个性化推荐系统应用中取得了较好的推荐效果和推荐质量.

关 键 词:协同过滤  相似性  等级评价  偏好序列

A Collaborative Filtering Recommendation Algorithm Based on User's Preference Order
LIU Xu-dong,YE Chang-guo. A Collaborative Filtering Recommendation Algorithm Based on User's Preference Order[J]. Journal of Taishan University, 2009, 31(6): 45-49
Authors:LIU Xu-dong  YE Chang-guo
Affiliation:LIU Xu -dong , YE Chang - guo (1. Scientific Research Department, Yantai Vocational College, Yantai ,264670 ; 2. School of Information Science and Technology, Taishan University, Tai'an,271021, China)
Abstract:Collaborative filtering is the most successful technology for building recommendation systems.Unfortunately,this method does not reflect user′s interests with the number of users and items.So this paper describes a new algorithm for collaborative filtering;the nearest neighbors of target user can be found based on the similarity of the user′s preference order and produce recommendation.It can be used to solve the problem on severe dependence of traditional collaborative filtering on user s rank rating,which does not reflect user's interests. This algorithm may effectively improve the traditional collaborative filtering algorithms used to find the target user's neighbors. Experiment results show that the new algorithm performs well in personalized recommendation system.
Keywords:collaborative filtering  similarity  rank rating  preference order
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号