首页 | 本学科首页   官方微博 | 高级检索  
     

基于模拟退火算法的Hopfield神经网络参数优化
作者姓名:齐小刚  王云鹤
作者单位:西安电子科技大学 数学与应用数学系,西安 710126
摘    要:为解决Hopfield神经网络应用过程中参数设置的问题,在研究Hopfield神经网络的工作原理的基础上,分析了神经网络模型在求解TSP(Traveling Salesman Problem)问题过程中参数的选取,通过对输出数据进行归一化处理建立网络的评价函数,然后引入模拟退火算法对参数进行最优化选取。实验结果表明,经过参数优化过的Hopfield神经网络模型能更有效,更快速地得到TSP问题的最优解。

关 键 词:参数优化  神经网络  TSP问题  模拟退火  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号