首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein.
Authors:M A Valverde  M Díaz  F V Sepúlveda  D R Gill  S C Hyde  C F Higgins
Institution:AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, UK.
Abstract:Expression of P-glycoprotein, the product of the MDR1 gene, confers multidrug resistance on cell lines and human tumours (reviewed in refs 1,2). P-glycoprotein (relative molecular mass 170,000) is an ATP-dependent, active transporter which pumps hydrophobic drugs out of cells, but its normal physiological role is unknown. It is a member of the ABC (ATP-binding cassette) superfamily of transporters, which includes many bacterial transport systems, the putative peptide transporter from the major histocompatibility locus, and the product of the cystic fibrosis gene (the cystic fibrosis transmembrane regulator, CFTR). CFTR is located in the apical membranes of many secretory epithelia and is associated with a cyclic AMP-regulated chloride channel. At least two other chloride channels are present in epithelial cells, regulated by cell volume and by intracellular Ca2+, respectively. Because of the structural and sequence similarities between P-glycoprotein and CFTR, and because P-glycoprotein is abundant in many secretory epithelia, we examined whether P-glycoprotein might be associated with one or other of these channels. We report here that expression of P-glycoprotein generates volume-regulated, ATP-dependent, chloride-selective channels, with properties similar to channels characterized previously in epithelial cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号