首页 | 本学科首页   官方微博 | 高级检索  
     

基于划分和重分布的粒子群算法及优化策略
引用本文:张培颂,唐常杰,丁鑫鑫,徐开阔,白兰东. 基于划分和重分布的粒子群算法及优化策略[J]. 四川大学学报(自然科学版), 2007, 44(2): 311-315
作者姓名:张培颂  唐常杰  丁鑫鑫  徐开阔  白兰东
作者单位:四川大学计算机学院,成都,610065;四川大学计算机学院,成都,610065;四川大学计算机学院,成都,610065;四川大学计算机学院,成都,610065;四川大学计算机学院,成都,610065
摘    要:
提出了一种新的基于划分和重分布的粒子群优化算法.新算法将粒子划分为普通和优化两类.普通粒子随机产生,速度快,侧重全局搜索;优化粒子紧随群体最优并且速度较慢,侧重局部收敛,以提高收敛精度.当群体最优未发生变更的时间过长时,在保持群体最优的同时将粒子重新分布,以摆脱过早的局部收敛.对典型函数的测试结果表明,新算法没有增加复杂度,在摆脱解的早熟和提高解的收敛精度等方面优于基本粒子群算法.

关 键 词:粒子群算法  划分  重分布  策略
文章编号:0490-6756(2007)02-0311-05
收稿时间:2006-07-03
修稿时间:2006-07-03

An improved particle swarm optimization based on division and redistribution
ZHANG Pei-song,TANG Chang-jie,DING Xin-xin,XU Kai-kuo and BAI Lan-dong. An improved particle swarm optimization based on division and redistribution[J]. Journal of Sichuan University (Natural Science Edition), 2007, 44(2): 311-315
Authors:ZHANG Pei-song  TANG Chang-jie  DING Xin-xin  XU Kai-kuo  BAI Lan-dong
Affiliation:College of Computer Science, Sichuan University,College of Computer Science, Sichuan University,College of Computer Science, Sichuan University,College of Computer Science, Sichuan University,College of Computer Science, Sichuan University
Abstract:
The authors proposes a novel Particle Swarm Optimization algorithm based on Division and Redistribution(DRPSO). It divides particles into two classes, i.e. common & optimized particles. Common class is with high velocity and good for global search. Optimized class is with slow velocity and good for local search. When the time of the optimized solution keeps constant for too long time, the best global solution is saved and particles will be redistributed with randomly to get out of local convergence. Experiments show that new method is much better than traditional Particle Swarm Optimization, It improves convergence precise degree of solution and does not increase complexity of algorithm.
Keywords:particle swarm optimization   division   redistribution   strategy
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号