首页 | 本学科首页   官方微博 | 高级检索  
     


Forecast Combination and Bayesian Model Averaging: A Prior Sensitivity Analysis
Authors:Martin Feldkircher
Affiliation:Oesterreichische Nationalbank, , Vienna, Austria
Abstract:
In this study we evaluate the forecast performance of model‐averaged forecasts based on the predictive likelihood carrying out a prior sensitivity analysis regarding Zellner's g prior. The main results are fourfold. First, the predictive likelihood does always better than the traditionally employed ‘marginal’ likelihood in settings where the true model is not part of the model space. Secondly, forecast accuracy as measured by the root mean square error (RMSE) is maximized for the median probability model. On the other hand, model averaging excels in predicting direction of changes. Lastly, g should be set according to Laud and Ibrahim (1995: Predictive model selection. Journal of the Royal Statistical Society B 57 : 247–262) with a hold‐out sample size of 25% to minimize the RMSE (median model) and 75% to optimize direction of change forecasts (model averaging). We finally apply the aforementioned recommendations to forecast the monthly industrial production output of six countries, beating for almost all countries the AR(1) benchmark model. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:forecast combination  Bayesian model averaging  median probability model  predictive likelihood  industrial production  model uncertainty
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号