首页 | 本学科首页   官方微博 | 高级检索  
     

推力轴承动力系统稳定性非线性分析及全局特性研究
引用本文:蒋立军,俞炳丰,王志刚,高强,朱均. 推力轴承动力系统稳定性非线性分析及全局特性研究[J]. 西安交通大学学报, 2001, 35(11): 1109-1112,1125
作者姓名:蒋立军  俞炳丰  王志刚  高强  朱均
作者单位:西安交通大学润滑理论及轴承研究所
基金项目:国家自然科学基金重点资助项目(59493703).
摘    要:用求解系统周期解分岔的庞加莱-牛顿-弗洛凯(Poincare-Newton-Floquet,PNF)法,对推力轴承的动力系统稳定性进行了研究。结合庞加莱(Poincare)映射与胞映射法的思想,提出了用于分析系统周期稳态解全局特性的数值计算方法-庞加莱胞映射法(Ponicare-Cell-Mappingn,PCM),并对推力轴承动力系统周期稳态解进行了全局特性的研究。结果表明,在推力轴承动力系统中存在着2次Hopf分岔,其系统参数u^-分别为1.54和3.26;当u^-值在两个分岔点之间时,系统仍然动力稳定的,当超过第2个分岔点后,系统的初值对系统的稳定性有很大影响,不同的初值会有不同的系统稳定性。

关 键 词:推力轴承 动力系统 稳定性 非线性 全局特性 庞加莱映射法
文章编号:0253-987(2001)11-1109-04

Nonlinear Analysis and Global Property of Dynamical System Stability of Thrust Bearings
Jiang Lijun ,Yu Bingfeng ,Wang Zhigang ,Gao Qiang ,Zhu Jun. Nonlinear Analysis and Global Property of Dynamical System Stability of Thrust Bearings[J]. Journal of Xi'an Jiaotong University, 2001, 35(11): 1109-1112,1125
Authors:Jiang Lijun   Yu Bingfeng   Wang Zhigang   Gao Qiang   Zhu Jun
Affiliation:Jiang Lijun 1,Yu Bingfeng 1,Wang Zhigang 1,Gao Qiang 1,Zhu Jun 2
Abstract:The Poincare Newton Floquet (PNF) method for investigating the bifurcation of the periodic solution of system is used to study the dynamic system stability of thrust bearings. A new numerical method called Poincare Cell Mapping (PCM) is presented to investigate the global property of the periodic solution of dynamic system of thrust bearings. The results indicate that there are two bifurcations in the dynamic system of thrust bearings at which the values of the systematic parameter are 1 54 and 3 26 respectively. The dynamic system is still stable when the systematic parameter has the value between 1 54 and 3 26, while the initial value of the system affects the system stability greatly when the value of exceeds 3 26 and the different initial values would lead to the different system stabi lity.
Keywords:thrust bearings  dynamical system stability
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号