首页 | 本学科首页   官方微博 | 高级检索  
     

基于K-Factor GARMA模型的网络流量预测
引用本文:周丹琪,乔国平,张泉方. 基于K-Factor GARMA模型的网络流量预测[J]. 江南大学学报(自然科学版), 2008, 7(2): 166-169
作者姓名:周丹琪  乔国平  张泉方
作者单位:1. 浙江大学,计算机科学与技术学院,浙江,杭州,310027
2. 江南计算技术研究所,江苏,无锡,214083
摘    要:
为衡量网络运行负荷和运行状态,在对目前网络流量预测模型进行研究的基础上,结合GARMA,对网络进行合理规划,使之能过较好描述长相关和短相关流量的特征,并且提出一个拥有简单参数改进的k-factor GARMA预测模型.仿真结果验证了所提方法的有效性.

关 键 词:网络流量  预测  GARMA模型  极大似然估计
文章编号:1671-7147(2008)02-0166-04
修稿时间:2007-06-22

Network Raffic Prediction Based on K-Factor GARMA Model
ZHOU Dan-qi,QIAO Guo-ping,ZHANG Quan-fang. Network Raffic Prediction Based on K-Factor GARMA Model[J]. Journal of Southern Yangtze University:Natural Science Edition, 2008, 7(2): 166-169
Authors:ZHOU Dan-qi  QIAO Guo-ping  ZHANG Quan-fang
Abstract:
To measure workload and state of network operation,a predictable algorithm based on the GARMA(Gegenbauer autoregressive moving average)model was presented.The present network traffic model has been studied to describe the prominent effect in reflecting both long and short-rang dependent characteristics.The lecture present an adaptive k-factor GARMA model with a simplified parameter estimation.The simulation results show that the new model can improve the prediction precision obviously compared with the old one.
Keywords:network traffic  prediction  GARMA model  maximum likelihood estimation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号