首页 | 本学科首页   官方微博 | 高级检索  
     

基于多目标进化算法混合框架的MOEA/D算法
引用本文:田红军,汪镭,吴启迪. 基于多目标进化算法混合框架的MOEA/D算法[J]. 系统仿真学报, 2020, 32(2): 201-216. DOI: 10.16182/j.issn1004731x.joss.17-9183
作者姓名:田红军  汪镭  吴启迪
作者单位:1. 同济大学 电子与信息工程学院,上海 201804;2. 申万宏源证券有限公司-复旦大学博士后科研工作站,上海 200031
基金项目:国家自然科学基金(61075064,61034004,61005090)
摘    要:针对混合多目标进化算法中如何设计全局搜索算法和局部搜索策略结合机制的难点问题以及提高多目标进化算法的求解性能,基于反馈控制思想,提出了一种系统化、模块化的全局优化与局部搜索相结合的混合MOEA/D算法,算法中设计了一种基于拥挤熵的种群多样性度量方法;提出了基于简化二次逼近的局部搜索策略,以及针对MOEA/D的种群多样性增强策略。数值实验表明所提算法具有良好性能,可以兼顾算法求解的多样性和收敛性,所提混合框架可有效提升现有多目标进化算法的求解性能。

关 键 词:多目标优化  进化算法  混合框架  MOEA/D  反馈控制  
收稿时间:2017-12-18

MOEA/D Algorithm Based on the Hybrid Framework for Multi-objective Evolutionary Algorithm
Tian Hongjun,Wang Lei,Wu Qidi. MOEA/D Algorithm Based on the Hybrid Framework for Multi-objective Evolutionary Algorithm[J]. Journal of System Simulation, 2020, 32(2): 201-216. DOI: 10.16182/j.issn1004731x.joss.17-9183
Authors:Tian Hongjun  Wang Lei  Wu Qidi
Affiliation:1. College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China;2. Postdoctoral Research Station of Shenwan Hongyuan Secur Co Ltd. and Fudan University, Shanghai 200031, China
Abstract:Aimto the difficulties of designing the bonding mechanism of global optimization algorithm and local search strategy for hybrid multi-objective evolutionary algorithm, and of improving the performance of multi-objective evolutionary algorithms, based on the feedback control idea, a systematic and modular hybrid MOEA/D algorithm combining the global optimization and local search is proposed. In the algorithm, a diversity measure method based on crowded entropy is designed; a local search strategy based on simplified quadratic approximation and population diversity enhancement strategy for MOEA/D is proposed. The numerical experiments show that the proposed HMOEA/D can achieve a balance between diversity and convergence of algorithm. The proposed hybrid framework can effectively improve the performance of existing multi-objective evolutionary algorithms.
Keywords:multi-objective optimization  evolutionary algorithm  hybrid framework  MOEA/D  feedback control  
点击此处可从《系统仿真学报》浏览原始摘要信息
点击此处可从《系统仿真学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号