Rayleigh-Benard对流问题的近似解及构造 |
| |
引用本文: | 谢凤艳,姜利敏,董永刚. Rayleigh-Benard对流问题的近似解及构造[J]. 达县师范高等专科学校学报, 2012, 0(5): 21-24 |
| |
作者姓名: | 谢凤艳 姜利敏 董永刚 |
| |
作者单位: | 安阳师范学院人文管理学院,河南安阳455002 |
| |
基金项目: | 国家自然科学基金项目(11101369) |
| |
摘 要: | 为揭示Rayleigh—Benard对流模型的特征,运用奇异摄动理论的小参数渐近展开法,研究了在给定的初值条件,初始层消失时,Rayleigh—Benard对流的Boussinesq近似系统解的无穷大Prandtl数渐近极限问题.给出了该问题的近似解和误差方程组.
|
关 键 词: | Rayleigh—B6nard对流模型 Boussinesq近似系统:误差方程组 . |
On the Asymptotic Solution and Construction of Convection Problems |
| |
Affiliation: | XIE Feng - yan, JIANG Li - min, DONG Yong - gang (Humanistic Management College of Anyang Normal University, Anyang Henan 455002, China) |
| |
Abstract: | To reveal the Characteristic of tlayleigh- Benard eonveetion model, based on the small parameter asymptotie expan- zion method of singular perturbation theory,this paper is concerned with the infinite Prandtl number limit of the solution to Flay- leigh - Benard convection in case of specially - prepared initial data, which ean make the initial layer disappeared. A asymptotic solution and error equations are also obtained in this paper. |
| |
Keywords: | Rayleigh - Benard convection model Boussinesq approximating system en'or equations. |
本文献已被 维普 等数据库收录! |