首页 | 本学科首页   官方微博 | 高级检索  
     

Rayleigh-Benard对流问题的近似解及构造
引用本文:谢凤艳,姜利敏,董永刚. Rayleigh-Benard对流问题的近似解及构造[J]. 达县师范高等专科学校学报, 2012, 0(5): 21-24
作者姓名:谢凤艳  姜利敏  董永刚
作者单位:安阳师范学院人文管理学院,河南安阳455002
基金项目:国家自然科学基金项目(11101369)
摘    要:
为揭示Rayleigh—Benard对流模型的特征,运用奇异摄动理论的小参数渐近展开法,研究了在给定的初值条件,初始层消失时,Rayleigh—Benard对流的Boussinesq近似系统解的无穷大Prandtl数渐近极限问题.给出了该问题的近似解和误差方程组.

关 键 词:Rayleigh—B6nard对流模型  Boussinesq近似系统:误差方程组  

On the Asymptotic Solution and Construction of Convection Problems
Affiliation:XIE Feng - yan, JIANG Li - min, DONG Yong - gang (Humanistic Management College of Anyang Normal University, Anyang Henan 455002, China)
Abstract:
To reveal the Characteristic of tlayleigh- Benard eonveetion model, based on the small parameter asymptotie expan- zion method of singular perturbation theory,this paper is concerned with the infinite Prandtl number limit of the solution to Flay- leigh - Benard convection in case of specially - prepared initial data, which ean make the initial layer disappeared. A asymptotic solution and error equations are also obtained in this paper.
Keywords:Rayleigh - Benard convection model  Boussinesq approximating system  en'or equations.
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号