首页 | 本学科首页   官方微博 | 高级检索  
     

一类发展的p(x)-Laplace方程解的存在唯一性
引用本文:曾羽群. 一类发展的p(x)-Laplace方程解的存在唯一性[J]. 集美大学学报(自然科学版), 2021, 26(2): 119-124. DOI: 10.19715/j.jmuzr.2021.02.05
作者姓名:曾羽群
作者单位:(集美大学理学院,福建 厦门 361021)
摘    要:讨论一类发展的p(x)-Laplace方程ut=div(a(x,t)|▽u|p(x)-2▽u)+f(u,x,t)解的存在唯一性.不同于此前的研究,文中假设a(x,t)≥0,且当x∈Ω时,a(x,t)>0,解的稳定性是建立在一个合理的部分边界条件u(x,t)=0,(x,t)∈Σ1上,其中Σ1? ?Ω ×(0,T)仅仅是一...

关 键 词:发展的p(x)-Laplace方程  存在唯一性  稳定性  部分边界条件  子流形

Existence and Uniqueness of Solutions to an Evolutionary p(x) -Laplace Equation
ZENG Yuqun. Existence and Uniqueness of Solutions to an Evolutionary p(x) -Laplace Equation[J]. the Editorial Board of Jimei University(Natural Science), 2021, 26(2): 119-124. DOI: 10.19715/j.jmuzr.2021.02.05
Authors:ZENG Yuqun
Affiliation:(School of Science,Jimei University,Xiamen 361021,China)
Abstract:The following evolutionary p(x)-Laplace equations t=div(a(x,t)∣△u∣p(x)-2△u)+f(u,x,t) were discussed,and the existence and the uniqueness of weak solutions were proved.Different from the previous works,it was assumed a(x,t)≥0and a(x,t)x∈Ω>0 in this paper.The stability of weak solutions was based on a reasonable partial boundary value condition u(x,t)=0,(x,t)∈Σ1,where Σ1Ω×(0,T) was just a submanifold.
Keywords:evolutionary p(x)-Laplace equation  existence and uniqueness  stability  partial boundary value condition  submanifold
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《集美大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《集美大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号