首页 | 本学科首页   官方微博 | 高级检索  
     

一类二阶广义Sturm-Liouville积分边值问题的可解性
引用本文:汤小松,王志伟. 一类二阶广义Sturm-Liouville积分边值问题的可解性[J]. 井冈山学院学报, 2009, 30(6): 32-34,58
作者姓名:汤小松  王志伟
作者单位:井冈山大学数理学院,江西,吉安,343009 
基金项目:上海市教育委员会E-研究院建设计划项目 
摘    要:
设f:[0,1]×R满足Caratheodory条件a,b,e∈L^1[0,1],利用Leray Schauder原理,获得了边值问题:x″=f(t,x(t),x′(t)+e(t),t∈(0,1),αx(0)-βx′(0)=∫0^1α(t)x(t)dt,γx(1)+δx′(1)=∫0^1b(t)x(t)dt,解的存在性。

关 键 词:广义Sturm—Liouville积分边值问题  Leray-Schauder原理  Caratheodory条件  不动点

Solvability of a second order boundary value problem with generalized Sturm-Liouville integral boundary condition
TANG Xiao-song,WANG Zhi-wei. Solvability of a second order boundary value problem with generalized Sturm-Liouville integral boundary condition[J]. Journal of Jinggangshan University, 2009, 30(6): 32-34,58
Authors:TANG Xiao-song  WANG Zhi-wei
Affiliation:(School of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China)
Abstract:
Let f:[2,1]×R^2→R satisfies Caratheodory condition,a,b,e∈L^1[0,1].By on Leray-Schauder continuation theorem,an existence result of solutions can be obtained for Sturm-Liouville integral boundary value problem of second order ordinary differential equations of the formx″=f(t,x(t),x′(t)+e(t),t∈(0,1),αx(0)-βx′(0)=∫0^1α(t)x(t)dt,γx(1)+δx′(1)=∫0^1b(t)x(t)dt.
Keywords:Generalized Sturm-Liouville integral boundary condition  Leray-Schauder continuation theorem  Caratheodory condition  fixed point  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号