摘 要: | 组稀疏学习在图像去噪中显示出巨大的潜力,但现有方法仅从图像块级别考虑含噪图像的非局部自相似性,影响了强噪声图像的重建质量.文中在组稀疏复原模型中引入组稀疏残差和全变分正则化约束,将含噪图像复原问题转化为多尺度图像块匹配和减小组稀疏残差;基于干净图像的组稀疏系数预估和多尺度图像块匹配,提出了自适应图像复原迭代算法,以提升组稀疏学习算法的图像去噪和精细结构复原能力.实验结果表明,文中算法能更好地保留图像的细节纹理,减少过平滑和伪影现象,在强噪声图像复原的主、客观综合评价上优于BM3D、WNNM等标杆去噪算法.
|