首页 | 本学科首页   官方微博 | 高级检索  
     

大规模MIMO系统中基于空时相关性的导频减小算法
引用本文:金凤,张进彦,尹礼欣. 大规模MIMO系统中基于空时相关性的导频减小算法[J]. 重庆邮电大学学报(自然科学版), 2017, 29(5): 642-648. DOI: 10.3979/j.issn.1673-825X.2017.05.010
作者姓名:金凤  张进彦  尹礼欣
作者单位:重庆邮电大学移动通信技术重庆市重点实验室,重庆,400065
基金项目:长江学者和创新团队发展计划(IRT1299)
摘    要:在大规模多输入多输出(multiple input multiple output,MIMO)系统信道估计过程中,基站向用户端发送导频信号.由于导频数量与基站发射天线的数量成正比,传统信道估计过程会产生巨大的导频开销,尤其是对于采用频分双工通信方式的(frequency-division duplexing,FDD)大规模MIMO系统.为了解决这一问题,通过利用无线MIMO信道的空间公共稀疏性和时间相关性,提出一种基于压缩感知(compressed sensing,CS)技术的导频开销减小算法,其中,空时相关性用来提高信道估计精度.该算法能够在未知大规模MIMO系统信道稀疏度的情况下,自适应地获取精确的信道状态信息.分析和仿真结果表明提出的算法在减少导频开销方面优于局部公共支撑算法,同时能够维持良好的信道估计性能.

关 键 词:大规模多输入多输出  空时相关性  信道估计  压缩感知
收稿时间:2016-11-28
修稿时间:2017-05-26

Pilot reduction using spatial and temporal correlation in massive MIMO systems
JIN Feng,ZHANG Jinyan and YIN Lixin. Pilot reduction using spatial and temporal correlation in massive MIMO systems[J]. Journal of Chongqing University of Posts and Telecommunications, 2017, 29(5): 642-648. DOI: 10.3979/j.issn.1673-825X.2017.05.010
Authors:JIN Feng  ZHANG Jinyan  YIN Lixin
Affiliation:Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Post and Communications, Chongqing 400065, P. R. China,Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Post and Communications, Chongqing 400065, P. R. China and Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Post and Communications, Chongqing 400065, P. R. China
Abstract:In the massive multiple input multiple output (MIMO) systems, the base station sends pilot signals for channel estimation at users. Since the number of pilots is proportional to the number of transmit antennas, pilot overhead required by conventional channel estimation can be prohibitively large, especially for frequency-division duplexing (FDD) massive MIMO. To solve this problem, we present a pilot overhead reduction algorithm based on compressive sensing (CS) techniques by utilizing the spatially common sparsity and temporal correlation in wireless MIMO channels, whereby the spatial and temporal correlation is exploited to improve the channel estimation accuracy. The proposed algorithm can adaptively acquire the accurate channel state information without the knowledge of the sparsity level of massive MIMO channel. Analysis and simulation results show that the proposed algorithm outperforms Locally Common Support Algorithm in pilot overhead reduction, and it is capable of achieving good channel estimation performance.
Keywords:massive MIMO   spatial and temporal correlation   channel estimation   compressive sensing(CS)
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号