首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波EMD的柴油机油耗量测量信号去噪处理
引用本文:刘玉梅,袁文华,彭雨. 基于小波EMD的柴油机油耗量测量信号去噪处理[J]. 中南大学学报(自然科学版), 2012, 43(2): 516-521
作者姓名:刘玉梅  袁文华  彭雨
作者单位:邵阳学院机械与能源工程系,湖南邵阳,422004
基金项目:湖南省自然科学基金资助项目(10JJ3061)
摘    要:
提出基于小波经验模态分解的柴油机油耗量信号去噪处理算法.将柴油机油耗量测量信号进行经验模态分解(EMD)后,经阈值处理和尺度滤波,去掉主要干扰因素所对应的本征模函数(IMF)分量,然后对剩余IMF分量进行重构,得到去噪后柴油机油耗量测量信号的时间序列.测试结果表明:重构后的信号能反映柴油机油耗量信号的真实趋势,其相对误差约为0.72%.

关 键 词:经验模态分解  小波  去噪处理  柴油机  油耗量

Denoising disposal of measurement signals of fuel consumption from diesel engine based on wavelet EMD method
LIU Yu-mei , YUAN Wen-hua , PENG Yu. Denoising disposal of measurement signals of fuel consumption from diesel engine based on wavelet EMD method[J]. Journal of Central South University:Science and Technology, 2012, 43(2): 516-521
Authors:LIU Yu-mei    YUAN Wen-hua    PENG Yu
Affiliation:(Department of Mechanical and Energy Engineering;Shaoyang College,Shaoyang 422004,China)
Abstract:
A new method for denoising disposal of measurement signals of fuel consumption from diesel engine was proposed by using wavelet and empirical mode decomposition(EMD) fusion.The measurement signals were disposed by EMD,restricting soft threshold and scale filtering,and the IMF components responds to main interference factors were eliminated,the time sequence of measurement signals of fuel consumption from diesel engine was obtained by reconstructing the remaining IMF components.The results show that the reconstructed signals can reflect the true trend of measurement signals of fuel consumption and the relative error is about 0.72%.
Keywords:empirical mode decomposition  wavelet  denoising disposal  diesel engine  fuel consumption
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号