首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
因子von Neumann代数上的非线性中心化子
作者姓名:
杨翠
吴冰
刘珍
作者单位:
1.河北工程技术学院信息技术学院, 石家庄 050091; 2.喀什大学数学与统计学院, 新疆 喀什 844000
基金项目:
新疆维吾尔自治区自然科学基金
摘 要:
设m,n是任意非零整数,且满足(m+n)(m-n)≠0, M是实或复数域F上的Hilbert空间上的一个因子von Neumann代数.利用代数分解方法证明了M上满足2mφ(AB)+2nφ(BA)=mφ(A)B+mAφ(B)+nφ(B)A+nBφ(A)的非线性映射φ为可加中心化子,并刻画出具体形式φ:A→λA(λ∈F, A∈M).
关 键 词:
因子von Neumann代数
中心化子
非线性映射
收稿时间:
2020-06-17
本文献已被
CNKI
万方数据
等数据库收录!
点击此处可从《华中师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华中师范大学学报(自然科学版)》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号