首页 | 本学科首页   官方微博 | 高级检索  
     

改进BP-神经网络在分子蒸馏过程中的应用
引用本文:陶叔,孙浩津,刘克平,姜长泓. 改进BP-神经网络在分子蒸馏过程中的应用[J]. 吉林工学院学报, 2013, 0(5): 488-492
作者姓名:陶叔  孙浩津  刘克平  姜长泓
作者单位:[1] 长春工业大学电气与电子工程学院,吉林长春130012 [2] 吉林省林业勘察设计研究院,吉林长春130021
基金项目:吉林省科技厅基金资助项目(20101505,20111819)
摘    要:针对分子蒸馏过程多变量、非线性、内部机理复杂、建模困难等问题,基于神经网络自学习、自适应及强非线性映射能力,提出了改进的BP神经网络产品纯度预测模型,深入探讨了神经网络在分子蒸馏过程中的应用。实验证明所提出的模型可以用来预测产品纯度。

关 键 词:分子蒸馏  预测模型  BP神经网络  产品纯度

Application of improved BP-neural network in the molecular distillation process
TAO Quan,SUN Hao-jin,LIU Ke-ping,JIANG Chang-hong. Application of improved BP-neural network in the molecular distillation process[J]. Journal of Jilin Institute of Technology, 2013, 0(5): 488-492
Authors:TAO Quan  SUN Hao-jin  LIU Ke-ping  JIANG Chang-hong
Affiliation:1. School of Electrical & Electronic Engineering, Changchun University of Technology, Changchun 130012, China; 2. Forest Survey and Institute of Jilin Province, Changchun 130012, China)
Abstract:The molecular distillation process has the features of multiple variables , nonlinearity , complex internal mechanism and difficult modeling . Based on self-learning , self-adapt and strong nonlinear mapping properties of the modified BP neural network ,a estimation model for the product purity is put forward and applied into the molecular distillation process .The experiments verify that the model is suitable for the product purity estimation .
Keywords:molecular distillation  estimation model  BP neural network  product purity
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号