首页 | 本学科首页   官方微博 | 高级检索  
     

Chaffee-Infante方程的动态分歧(英文)
引用本文:王仲平,钟承奎. Chaffee-Infante方程的动态分歧(英文)[J]. 兰州大学学报(自然科学版), 2010, 46(6)
作者姓名:王仲平  钟承奎
摘    要:
对Chaffee-Infante方程给出了分歧分析.在两种情形下证明了当参数λ穿过第一临界值λ_0=1时,该问题分歧出一个吸引子.该分析是以最近创立的新的吸引子分歧理论为基础,同时运用了中心流形约化方法.

关 键 词:Chaffee-Infante方程  吸引子分歧  中心流形

Dynamic bifurcation for the Chaffee-Infante equation
WANG Zhong-ping,ZHONG Cheng-kui. Dynamic bifurcation for the Chaffee-Infante equation[J]. Journal of Lanzhou University(Natural Science), 2010, 46(6)
Authors:WANG Zhong-ping  ZHONG Cheng-kui
Abstract:
A bifurcation analysis on the Chaffee-Infante equation was presented and it was proved that the problem bifurcated an attractor as λ crossed the first critical value λ0=1 for two cases . The analysis was based on a newly developed attractor bifurcation theory ,together with the center manifold reduction.
Keywords:Chaffee-Infante equation  attractor bifurcation  center manifold
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号