首页 | 本学科首页   官方微博 | 高级检索  
     

Hilbert空间中伪单调变分不等式的严格可行性
引用本文:刘小兰. Hilbert空间中伪单调变分不等式的严格可行性[J]. 四川理工学院学报(自然科学版), 2010, 23(2): 144-146
作者姓名:刘小兰
作者单位:四川理工学院理学院,四川,自贡,643000
基金项目:四川理工学院人才引进科研启动项目 
摘    要:文章在映射为全连续场和伪单调的情况下,运用拓扑度的同伦不变性,切除性等性质,证明了在Hilbret空间中变分不等式解的非空有界性等价于严格可行性,将已有的结果从有限维欧式空间推广到了无穷维的Hilbret空间中。

关 键 词:变分不等式  拓扑度  严格可行性  全连续场  伪单调映射

Strict Feasi bility of Pseudo-monotone Variational Inequality in Hilbert Spaces
LIU Xiao-lan. Strict Feasi bility of Pseudo-monotone Variational Inequality in Hilbert Spaces[J]. Journal of Sichuan University of Science & Engineering(Natural Science Editton), 2010, 23(2): 144-146
Authors:LIU Xiao-lan
Affiliation:LIU Xiao-lan(School of Science,Sichuan University of Science & Engineering,Zigong 643000,China)
Abstract:This paper proves that solution set of variational inequality being nonempty and bounded is equivalent to the strict feasibility in Hibert spaces.We provide that the mapping is a compact field and pseudo-monotone,and use the homotopy invariance of the topological degree and the excision property of the topological degree.This generalizes some known results from finite dimensional spaces to infinite dimensional spaces.
Keywords:variational inequality  degree theory  strictly feasible  compact field  pseudo-monotone mapping  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号