首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传小波神经网络的变压器故障诊断
引用本文:马桂雨,王雪丹,万丹. 基于遗传小波神经网络的变压器故障诊断[J]. 吉首大学学报(自然科学版), 2013, 34(1): 51-55. DOI: 10.3969/j.issn.1007-2985.2013.01.013
作者姓名:马桂雨  王雪丹  万丹
作者单位:(黑龙江科技学院,黑龙江 哈尔滨 150027)
摘    要:电力变压器油中溶解气体的色谱分析是变压器故障诊断的重要方法,通过该方法可以间接了解变压器的运行状态和内部潜在故障.人工神经网络已经成功地应用于电力变压器故障诊断,但学习样本数多和输入输出关系复杂性减慢了网络的收敛速度.为解决此问题,将用遗传算法改进的小波神经网络应用于电力变压器故障诊断,克服小波算法易于陷入局部极小、收敛速度慢等缺点.

关 键 词:小波神经网络  遗传算法  变压器故障诊断  

Power Transformer Fault Diagnosis Based on Genetic Wavelet Neural Network
MA Gui-yu , WANG Xue-dan , WAN Dan. Power Transformer Fault Diagnosis Based on Genetic Wavelet Neural Network[J]. Journal of Jishou University(Natural Science Edition), 2013, 34(1): 51-55. DOI: 10.3969/j.issn.1007-2985.2013.01.013
Authors:MA Gui-yu    WANG Xue-dan    WAN Dan
Affiliation:(Heilongjiang University of Science and Technology,Harbin 150027,China)
Abstract:The chromatographic analysis of the power transformer oil dissolved gas is an important method for transformer fault diagnosis by which the operating state of the transformer and the potential transformer internal fault can be grasped indirectly.Artificial neural network has been applied in the power transformer fault diagnosis successfully,but the  large number of learning samples and the complicated input-output relationship will lead to a slow network convergence.To resolve the problem,this paper employ the wavelet neural network improved by using genetic algorithms  in power transformer fault diagnosis,thus overcoming the shortcomings of  local minima and slow convergence speed.
Keywords:wavelet neural network  genetic algorithms  power transformer fault diagnosis
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉首大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《吉首大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号