首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法和最速下降法的函数优化混合数值算法
引用本文:赵明旺. 基于遗传算法和最速下降法的函数优化混合数值算法[J]. 系统工程理论与实践, 1997, 17(7): 61-66. DOI: 10.12011/1000-6788(1997)7-61
作者姓名:赵明旺
作者单位:武汉冶金科技大学自动化系
基金项目:武汉市科委“晨光计划”和冶金工业部理论研究基金
摘    要:在遗传算法中嵌入一个最速下降算子,并定义适当的适应度函数和子代个体的选择算子,从而可结合遗传算法和最速下降法两者的长处,得到既有较快收敛性,又能以较大概率得到全局极值的新的用于连续函数全局优化的混合数值算法。数值计算结果表明了本文方法显著优于求解函数优化的遗传算法和最速下降法.

关 键 词:遗传算法  最速下降法  函数优化  适应度  
收稿时间:1996-01-23

A Hybrid Numerical Algorithm for Function Optimization Based on Genetic Algorithm and Steepest Decent Algorithm
Zhao Mingwang. A Hybrid Numerical Algorithm for Function Optimization Based on Genetic Algorithm and Steepest Decent Algorithm[J]. Systems Engineering —Theory & Practice, 1997, 17(7): 61-66. DOI: 10.12011/1000-6788(1997)7-61
Authors:Zhao Mingwang
Affiliation:Dept.of Automation, Wuhan Yejin University of Science & Technology, 430081
Abstract:In this paper, through a steepest decent operator is embedded into the genetic algorithm and a proper fitness function and a selecting operator for son generation are defined, a hybrid algorithm for global optimization of continuous function,combined the advances of both of genetic algorithm and steepest decent algorithm, is got with fast convergence and great probability for global optimization.The numerical computing results shown that the method is distinctly superior to the genetic algorithm and steepest decent algorithm.
Keywords:genetic algorithm  steepest decent algorithm  function optimization  fitness
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号