首页 | 本学科首页   官方微博 | 高级检索  
     

基于系统云灰色SCGM(1,1)c模型的铁路货运量预测
引用本文:李博. 基于系统云灰色SCGM(1,1)c模型的铁路货运量预测[J]. 科学技术与工程, 2011, 11(5)
作者姓名:李博
作者单位:大连交通大学土木与安全工程学院,大连,116028
摘    要:
从铁路货运量的预测问题出发,试图找到稳定有效的方法对铁路货运量进行预测。通过对历年铁路货运量的定性分析,合理地选择预测数据数列,以充分体现铁路货运量的变化趋势。尝试采用单因子系统云灰色SCGM(1,1)c模型对铁路货运量进行了动态预测。结果表明:单因子系统云灰色SCGM(1,1)c模型在对铁路货运量的拟合和预测均有较好的效果。拟合精度和预测精度分别达到了98.83%和98.04%,可以有效地进行铁路货运量的短期预测。

关 键 词:铁路货运量  定量分析  单因子系统云灰色模型  预测  
收稿时间:2010-10-28
修稿时间:2010-10-28

Prediction of Railway Freight Volume Based on System Cloud Grey SCGM(1,1)c Model
libo. Prediction of Railway Freight Volume Based on System Cloud Grey SCGM(1,1)c Model[J]. Science Technology and Engineering, 2011, 11(5)
Authors:libo
Affiliation:LI Bo(College of Civil and Safety Engineering,Dalian Jiaotong University,Dalian 116028,P.R.China)
Abstract:
The prediction of railway freight volume is focused on and tried to find an effective method to forecast the railway freight volume.Data series of railway freight volume over the years was analyzed quantitatively and a modeling time series was determined which revealed the trend of railway freight volumes.Then a single-factor system cloud grey SCGM(1,1)c model was presented to forecast railway freight volume.The results conform that SCGM(1,1)c model performs well in both fitting and prediction for railway f...
Keywords:railway freight volume qualitative analysis singl-factor system cloud grey model prediction  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号