面向功能分区的大型商场建筑冷负荷预测方法 |
| |
作者姓名: | 赵安军 杨航杰 荆竞 张萌芝 焦阳 |
| |
作者单位: | 西安建筑科技大学建筑设备与工程学院,西安 710055;西安建筑科技大学信息与控制工程学院,西安 710055;中国建筑西北设计研究院有限公司,西安 710018 |
| |
基金项目: | 国家重点研发计划资助项目(2017YFC0704100)。 |
| |
摘 要: | 针对大型商场面向建筑整体冷负荷预测不能为商场各区域按需供冷提供合理控制策略的问题,通过研究商场不同区域冷负荷特点,采用灰色关联度分析法筛选影响商场不同区域冷负荷的关键影响因素,针对实际情况中各输入特征对冷负荷影响程度的不稳定性,提出了基于双重注意力机制和LSTM的短期分区冷负荷预测模型。LSTM网络充分考虑空调冷负荷与相关特征变量之间的非线性关系,特征注意力自主分析历史信息和输入变量之间的关系,提取重要特征,时序注意力选取LSTM网络关键时刻的历史信息,提升较长时间段预测效果的稳定性。以西安某大型商场建筑的冷负荷数据集为实验数据,实验结果表明所提模型相比于LSTM模型、CNN-LSTM模型和Attention-LSTM模型,误差指标MAPE和RMSE均有显著降低,R2明显增加且稳定0.99以上,具有较好的泛化能力和较强的稳定性。
|
关 键 词: | 功能分区 灰色关联度 冷负荷预测 注意力机制 长短记忆神经网络 |
收稿时间: | 2021-10-30 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息 |
|
点击此处可从《重庆大学学报(自然科学版)》下载全文 |
|