首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群算法的井眼轨迹优化研究
引用本文:丁华,王秀坤,孙焘. 基于粒子群算法的井眼轨迹优化研究[J]. 大连理工大学学报, 2005, 45(3): 449-452
作者姓名:丁华  王秀坤  孙焘
作者单位:大连理工大学,计算机科学与工程系,辽宁,大连,116024;山东省科技发展战略研究所,山东,济南,250014;大连理工大学,计算机科学与工程系,辽宁,大连,116024
摘    要:为了更优更快地对石油工程中的井眼轨迹进行优化,进行了基于改进粒子群优化(PSO)算法的井眼轨迹优化研究.通过对造斜率归一化,推导出目标函数表达式,将问题归结到对式中参数优化问题上来.引入PSO算法,在保持了PSO算法结构简单可行特点的同时,利用惩罚函数方法和叉乘控制项,对基本PSO算法易限入局部极小点周边区域的局限进行了改进.该井眼轨迹模型和相应算法提高了井眼轨迹优化速度.通过对钻井工程中轨迹参数的优化实践,验证了本算法优于基本的PSO算法,较好地实现了对井眼轨迹的优化.

关 键 词:惩罚函数  粒子群  优化
文章编号:1000-8608(2005)03-0449-04

Research on optimization of well track based on PSO algorithm
DING Hua,WANG Xiu-kun,SUN Tao. Research on optimization of well track based on PSO algorithm[J]. Journal of Dalian University of Technology, 2005, 45(3): 449-452
Authors:DING Hua  WANG Xiu-kun  SUN Tao
Abstract:For the purpose of optimization of well track in petroleum engineering, the well track optimization based on particle swarm optimization (PSO) algorithm has been studied. By making the rate of making bevel as initial known parameter, the target function expression has been concluded. Then the main problem is the optimization of parameters of function. Meanwhile the PSO algorithm is introduced with keeping the merits of briefness and easy realization, by adopting the method of penalty function and the forking product controlling item, and the shortcoming of the original algorithm for getting into the scope around local particle point is overcome. This module and corresponding algorithms have improved the efficiency of the optimization of well track. By the operation in engineering practice, the example validates that the improved algorithm is better than the original PSO algorithm.
Keywords:penalty function  particle swarm  optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号