首页 | 本学科首页   官方微博 | 高级检索  
     

行人多目标跟踪算法
引用本文:朱新丽,才华,寇婷婷,杜冬晖,孙俊喜. 行人多目标跟踪算法[J]. 吉林大学学报(理学版), 2021, 59(5): 1161-1170. DOI: 10.13413/j.cnki.jdxblxb.2021033
作者姓名:朱新丽  才华  寇婷婷  杜冬晖  孙俊喜
作者单位:1. 长春理工大学 电子信息工程学院, 长春 130022; 2. 长春中国光学科学技术馆, 长春 130117; 3. 东北师范大学 信息科学与技术学院, 长春 130117
摘    要:
针对多目标跟踪中因目标遮挡而导致跟踪过程中身份交换频繁的问题,提出一种行人多目标跟踪算法.该算法首先使用YOLOv4作为检测器,检测出目标并确定检测框坐标,利用扩展Kalman滤波器对轨迹进行预测;然后用匈牙利算法作为数据关联模块,采用级联匹配方法将扩展Kalman滤波预测的检测框与目标检测的检测框进行匹配,并将发生遮...

关 键 词:计算机视觉  多目标跟踪  YOLOv4  扩展Kalman滤波
收稿时间:2021-01-13

Pedestrian Multi-target Tracking Algorithm
ZHU Xinli,CAI Hua,KOU Tingting,DU Donghui,SUN Junxi. Pedestrian Multi-target Tracking Algorithm[J]. Journal of Jilin University: Sci Ed, 2021, 59(5): 1161-1170. DOI: 10.13413/j.cnki.jdxblxb.2021033
Authors:ZHU Xinli  CAI Hua  KOU Tingting  DU Donghui  SUN Junxi
Affiliation:1. School of Electronic Information and Engineering, Changchun University of Science and Technology, Changchun 130022, China; 
2. Changchun China Optics Science and Technology Museum, Changchun 130117, China;
3. School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
Abstract:
Aiming at the problem of frequent identity exchange in multi-target tracking due to target occlusion, we proposed a pedestrian multi-target tracking algorithm. Firtsly, the algorithm used YOLOv4 as the detector to detect the target and determine the coordinates of the detection frame, the extended Kalman filter was used to predict the trajectory. Secondly, the Hungarian algorithm was used as the data association module, the detection frame predicted by extended Kalman filter was matched with the detection frame of target detection by cascade matching method, and the trajectory anomaly correction algorithm was added for the occluded target. Finally, the experiments were carried out on the test set of the MOT16 data set. The experimental results show that the algorithm achieves 56.5% tracking accuracy, and has a good effect on the occlusion phenomenon, which effectively improves the problem of frequent identity switching and target loss caused by occlusion.
Keywords:computer vision  multi-target tracking  YOLOv4  extended Kalman filter  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号