首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
不同阶次下分数阶SIR传染病模型的稳定性分析
作者姓名:
钱蓉
肖敏
王璐
作者单位:
南京邮电大学 自动化学院, 人工智能学院, 南京 210023
摘 要:
建立一类考虑Logistic增长与饱和传染率的不同阶次分数阶时滞传染病模型. 首先, 利用Jacobi矩阵和特征根轨迹法, 分析该模型的局部稳定性, 并给出基本再生数; 其次, 选取分岔参数作为时滞, 给出地方病平衡点发生Hopf分岔的充分条件; 最后, 利用数值仿真验证理论分析的正确性. 研究结果表明, 分数阶次的改变会影响系统的稳定性.
关 键 词:
不同阶次
分数阶
时滞
SIR模型
Hopf分岔
平衡点
稳定性
收稿时间:
2020-11-19
本文献已被
CNKI
万方数据
等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号