首页 | 本学科首页   官方微博 | 高级检索  
     

广义二次矩阵与其幂等矩阵线性组合幂等性的非平凡解
引用本文:陈梅香,叶铃滢,杨忠鹏. 广义二次矩阵与其幂等矩阵线性组合幂等性的非平凡解[J]. 吉林大学学报(理学版), 2021, 59(2): 221-228. DOI: 10.13413/j.cnki.jdxblxb.2020255
作者姓名:陈梅香  叶铃滢  杨忠鹏
作者单位:1. 莆田学院 数学与金融学院, 福建 莆田 351100; 2. 福建师范大学 数学与信息学院, 福州 350007
基金项目:国家自然科学基金;福建省自然科学基金
摘    要:首先,用广义二次矩阵的基本性质,研究表示为A2=αA+βP的广义二次矩阵A与幂等矩阵P的线性组合ρA+σP为幂等的非平凡解(ρ,σ)的存在性,结果表明,当η2=4β+α2≠0时,ρA+σP有且仅有两个非平凡解,A可唯一地表示为这两个非平凡解生成的幂等矩阵的线性组合;其次,讨论当η2=4β+α2=0时ρA+σP非平凡解的...

关 键 词:广义二次矩阵  幂等矩阵  幂零矩阵  线性组合  非平凡解
收稿时间:2020-08-31

Nontrivial Solutions of Idempotency of Linear Combinations of Generalized Quadratic Matrix and Its Idempotent Matrix
CHEN Meixiang,YE Lingying,YANG Zhongpeng. Nontrivial Solutions of Idempotency of Linear Combinations of Generalized Quadratic Matrix and Its Idempotent Matrix[J]. Journal of Jilin University: Sci Ed, 2021, 59(2): 221-228. DOI: 10.13413/j.cnki.jdxblxb.2020255
Authors:CHEN Meixiang  YE Lingying  YANG Zhongpeng
Affiliation:1. School of Mathematics and Finance, Putian University, Putian 351100, Fujian Province, China;
2. College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350007, China
Abstract:Firstly, by using the basic properties of generalized quadratic matrices, we studied the existence of the nontrivial solution (ρ,σ) for the linear combination ρA+σP of  generalized quadratic matrix A and an idempotent matrix P expressed as A2=αA+βP. The results show that when η2=4β+α2≠0, ρA+σP has only two nontrivial solutions, and the matrix A can be uniquely expressed as a linear combination of idempotent matrix generated by these two nontrivial solutions. Secondly, we discussed the case for nontrivial solution of ρA+σP when η2=4β+α2=0.
Keywords:generalized quadratic matrix  idempotent matrix  nilpotent matrix  linear combination  nontrivial solution  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号