首页 | 本学科首页   官方微博 | 高级检索  
     

基于图像特征的卷积核初始化方法
引用本文:李鹏松,李俊达,倪天宇,张琦,胡建平. 基于图像特征的卷积核初始化方法[J]. 吉林大学学报(理学版), 2021, 59(3): 587-594. DOI: 10.13413/j.cnki.jdxblxb.2020134
作者姓名:李鹏松  李俊达  倪天宇  张琦  胡建平
作者单位:东北电力大学 理学院, 吉林 吉林 132012
摘    要:针对当前卷积核初始化方法易导致网络不稳定及主成分分析算法对网络结构限制的问题,提出一种基于图像特征的卷积核初始化方法.该方法先结合模糊处理技术和边缘处理技术对图像进行采样,再将采样后的数据随机分组,使用主成分分析算法提取各组数据的主成分,初始化卷积核.将该方法应用于数据集Cifar-10和Corel-1000,并与Ga...

关 键 词:深度学习  卷积核初始化  图像特征  主成分分析  随机组合
收稿时间:2020-05-14

Convolution Kernel Initialization Method Based on Image Features
LI Pengsong,LI Junda,NI Tianyu,ZHANG Qi,HU Jianping. Convolution Kernel Initialization Method Based on Image Features[J]. Journal of Jilin University: Sci Ed, 2021, 59(3): 587-594. DOI: 10.13413/j.cnki.jdxblxb.2020134
Authors:LI Pengsong  LI Junda  NI Tianyu  ZHANG Qi  HU Jianping
Affiliation:College of Sciences, Northeast Electric Power University, Jilin 132012, Jilin Province, China
Abstract:Aiming at the problem that the  current convolution kernel initialization method was easy to lead to network instability and the limitation of principal component analysis algorithm on network structure, we proposed a convolution kernel initialization method based on image features. Firstly, the method combined fuzzy processing technology and edge processing technology to sample images, and then the sampled data were randomly divided into groups. Principal component analysis algorithm was used to extract the principal components of each group of data, and the convolution kernel was initialized. We applied the method to Cifar-10 and Corel-1000 datasets, and compared it with Gaussian initialization method and He initialization method. The experimental results show that the performance of the method is superior to other convolution kernel initialization methods.
Keywords:deep learning   convolution kernel initialization   image feature   principal component analysis   random combination  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号