首页 | 本学科首页   官方微博 | 高级检索  
     

二级倒立摆的TS型逐级模糊神经网络控制
引用本文:朱学峰,周文彬,陈华艳. 二级倒立摆的TS型逐级模糊神经网络控制[J]. 华南理工大学学报(自然科学版), 2005, 33(2): 43-47
作者姓名:朱学峰  周文彬  陈华艳
作者单位:华南理工大学,自动化科学与工程学院,广东,广州,510940;华南理工大学,自动化科学与工程学院,广东,广州,510940;华南理工大学,自动化科学与工程学院,广东,广州,510940
摘    要:
提出了一种逐级模糊神经网络控制法.该控制法通过采用Takagi-Sugeno型模糊神经网络控制器和逐级模糊控制规则,实现了二级倒立摆系统的稳定控制.模糊神经网络控制器的参数采用遗传算法分4步进行优化.实验结果表明,采用逐级模糊神经网络控制法,用20条模糊规则就可以实现二级倒立摆系统的稳定控制,并且控制效果佳,系统鲁棒性强。

关 键 词:逐级控制  倒立摆  Takagi-Sugeno型模糊逻辑  神经网络控制
文章编号:1000-565X(2005)02-0043-05
修稿时间:2004-05-14

Control of the Double-Link Inverted Pendulum by Using Takagi-Sugeno Model Based on Gradual Fuzzy Neural Network
Zhu Xue-feng,ZHOU Wen-bin,Chen Hua-yan. Control of the Double-Link Inverted Pendulum by Using Takagi-Sugeno Model Based on Gradual Fuzzy Neural Network[J]. Journal of South China University of Technology(Natural Science Edition), 2005, 33(2): 43-47
Authors:Zhu Xue-feng  ZHOU Wen-bin  Chen Hua-yan
Abstract:
A new control method is proposed by using the gradual fuzzy neural network. In this method, the Takagi-Sugeno fuzzy neural network controller and gradual fuzzy control rules are adopted to stabilize the double-link inverted pendulum. Moreover, Genetic Algorithm is used to optimize the parameters of the Takagi-Sugeno fuzzy controller in 4 steps. Experimental results indicate that, only with 20 rules, the gradual fuzzy neural network controller can stabilize the double-link inverted pendulum with good effect and strong system robustness.
Keywords:gradual control  inverted pendulum  Takagi-Sugeno fuzzy logic  neural network control
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号